Low Regularity Local Well-Posedness for the Zero Energy Novikov–Veselov Equation

نویسندگان

چکیده

The initial value problem $u(x,y,0)=u_0(x,y)$ for the Novikov-Veselov equation $$\partial_tu+(\partial ^3 + \overline{\partial}^3)u +3(\partial (u\overline{\partial}^{-1}\partial u)+\overline{\partial}(u\partial^{-1}\overline{\partial}u))=0$$ is investigated by Fourier restriction norm method. Local well-posedness shown in nonperiodic case $u_0 \in H^s(\mathbb{R}^2)$ with $s > - \frac{3}{4}$ and periodic data H^s_0(\mathbb{T}^2)$ mean zero, where \frac{1}{5}$. Both results rely on structure of nonlinearity, which becomes visible a symmetrization argument. Additionally, bilinear Strichartz-type estimate derived.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data

The Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition is considered. Local well-posedness for data u0 in the space b H r (T), defined by the norms ‖u0‖ b Hs r (T) = ‖〈ξ〉 s b u0‖lr′ ξ , is shown in the parameter range s ≥ 1 2 , 2 > r > 4 3 . The proof is based on an adaptation of the gauge transform to the periodic setting and an appropriate varian...

متن کامل

Sharp Local Well-posedness Results for the Nonlinear Wave Equation

This article is concerned with local well-posedness of the Cauchy problem for second order quasilinear hyperbolic equations with rough initial data. The new results obtained here are sharp in low dimension.

متن کامل

Local Well-posedness for the Maxwell-schrödinger Equation

Time local well-posedness for the Maxwell-Schrödinger equation in the Coulomb gauge is studied in Sobolev spaces by the contraction mapping principle. The Lorentz gauge and the temporal gauge cases are also treated by the gauge transform. Mathematics Subject Classification (2000) : 35Q55, 35Q60, 35L70.

متن کامل

Global Well-posedness of the Benjamin–ono Equation in Low-regularity Spaces

whereH is the Hilbert transform operator defined (on the spaces C(R : H), σ ∈ R) by the Fourier multiplier −i sgn(ξ). The Benjamin–Ono equation is a model for one-dimensional long waves in deep stratified fluids ([1] and [16]) and is completely integrable. The initial-value problem for this equation has been studied extensively for data in the Sobolev spaces H r (R), σ ≥ 0. It is known that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Mathematical Analysis

سال: 2023

ISSN: ['0036-1410', '1095-7154']

DOI: https://doi.org/10.1137/21m1458065